
MAT TRIAD 2017

Book of Abstracts

September 25 – 29, 2017
Będlewo, Poland



Edited by

K. Filipiak
Institute of Mathematics,
Poznań University of Technology, Poland

and

D. Wojtera-Tyrakowska
Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

Printed by

Bogucki Wydawnictwo Naukowe, www.bogucki.com.pl,
from camera ready materials provided by Editors

ISBN: 978-83-7986-157-6



Contents

Part I. Introduction

Part II. Program

Part III. Lectures

Deconstructing type III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Lynn R. LaMotte

Tensors and some combinatorial properties of tensors . . . . . . . . . 31
Fuzhen Zhang

Part IV. Invited Speakers

Multivariate stochastic comparisons in actuarial science and
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Narayanaswamy Balakrishnan

Computing f(A)b, the action of a matrix function on a vector . 36
Andreas Frommer

The distance to instability and singularity for structured ma-
trix pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Volker Mehrmann

On negative spectral moments using asymptotic freeness of
matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Jolanta Pielaszkiewicz

Introduction to rank-function and its applications . . . . . . . . . . . . 40
Nayan Bhat, K. Manjunatha Prasad, and Nupur Nandini

Numerics of the Gram-Schmidt process and its relation to the
SR decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Miroslav Rozložník

Robust dynamics of real systems based on the pseudospectra . 43
Ernest Šanca



4

Part V. Special Sessions

Special Session on Total Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Jürgen Garloff

Special Session on Interval Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Milan Hladík

Special Session on Matrix Methods in Linear Models . . . . . . . . . 49
Daniel Klein

Part VI. Contributed Talks

Solving inverse eigenvalue problems for totally nonnegative
matrices with finite steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Kanae Akaiwa

Extending accurate computations for totally positive matrices 54
Àlvaro Barreras and Juan M. Peña

Density matrices arising from incomplete measurements . . . . . . 55
Natalia Bebiano

Interval pseudoinverse matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Jan Bok and Milan Hladík

A Branch-and-Bound scheme for the range of rank-deficient
quadratic forms with interval-valued variables . . . . . . . . . . . . . . . . 57

Michal Černý, Miroslav Rada, and Milan Hladík

Hurwitz and Hurwitz-type matrices of two-way infinite series . 59
Alexander Dyachenko

Diagonal elements in the nonnegative inverse eigenvalue prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Richard Ellard and Helena Šmigoc

Properties of partial trace and block trace operators of parti-
tioned matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Katarzyna Filipiak and Daniel Klein

Integrable eigenvalue algorithms for totally nonnegative ma-
trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Akiko Fukuda

Bruhat order for symmetric (0, 1)-matrices . . . . . . . . . . . . . . . . . . . . 64
Henrique F. Cruz, Rosário Fernandes and Susana Furtado



5

Recent applications of the Cauchon algorithm to totally non-
negative matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Jürgen Garloff and Mohammad Adm

On nonnegative minimum biased quadratic estimation in the
linear regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Mariusz Grządziel

Tightening bounds on the radius of nonsingularity . . . . . . . . . . . 67
David Hartman and Milan Hladík

Algebraic properties of some contingency tables . . . . . . . . . . . . . . 68
Oskar Maria Baksalary, Jan Hauke

AE regularity of interval matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Milan Hladík

Application of interval linear algebra in data estimation . . . . . 70
Jaroslav Horáček, Milan Hladík, and Václav Koucký

Commutators and matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Osman Kan and Süleyman Solak

Estimation of parameters under the multilevel multivariate
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Katarzyna Filipiak and Daniel Klein

Linear spaces of symmetric nilpotent matrices . . . . . . . . . . . . . . . . 73
Damjana Kokol Bukovšek and Matjaž Omladič

On some properties of weights matrices used in spatial analysis 74
Jan Hauke, Tomasz Kossowski, and Justyna Wilk

Best unbiased estimates for parameters of three-level multi-
variate data with doubly exchangeable covariance structure . . . 75

Arkadiusz Kozioł

Determinants of interval matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Josef Matějka, Jaroslav Horáček, Milan Hladík

Studying the inertia of an LCM matrix . . . . . . . . . . . . . . . . . . . . . . . 77
Pentti Haukkanen, Mika Mattila, and Jori Mäntysalo

Confidence regions and tests for normal models with orthog-
onal block structure: pivot variables . . . . . . . . . . . . . . . . . . . . . . . . . . 79

João T. Mexia, Sandra S. Ferreira, Dário Ferreira, and Célia
Nunes



6

On projection of a positive definite matrix on a cone of non-
negative definite Toeplitz matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Katarzyna Filipiak, Augustyn Markiewicz, and Adam Mieldzioc

Jordan triple product homomorphisms on triangular matrices
to and from dimension one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Damjana Kokol Bukovšek and Blaž Mojškerc

Kronecker product approximation via entropy loss function . . . 83
Katarzyna Filipiak, Daniel Klein, Augustyn Markiewicz, and
Monika Mokrzycka

Normal approximations for vec, trace and determinant of non-
central Wishart matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Célia Nunes, Sandra S. Ferreira, Dário Ferreira, Miguel Fonseca,
Manuela M. Oliveira, and João T. Mexia

Neglecting non-diagonalizable matrices in social sciences . . . . . . 86
Pieter-Jan Pauwelyn and Marie-Anne Guerry

More about linear sufficiency in the linear mixed model . . . . . . 87
Augustyn Markiewicz and Simo Puntanen

Robustness in the multivariate Gaussian distribution . . . . . . . . . 88
Charles A. Rohde

Generalized Jacobi and Gauss-Seidel method for solving non-
square linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Manideepa Saha

A new method for determining the radius of regularity of
parametric interval matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Lubomir Kolev and Iwona Skalna and Milan Hladík

Infinite matrices and the Jordan form . . . . . . . . . . . . . . . . . . . . . . . . 91
Roksana Słowik

On circulant matrices with Ducci sequences and Fibonacci
numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Süleyman Solak, Mustafa Bahşi, and Osman Kan

Immanant inequalities on correlation matrices and Littlewood-
Richardson’s correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Ryo Tabata

Sums of H-unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Terrence Teh, Agnes T. Paras, and Dennis I. Merino



7

Root location of polynomials with totally nonnegative Hur-
witz matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Mohamad Atm, Jürgen Garloff, and Mikhail Tyaglov

Fixed effects estimation in two-variance components models . . 97
Tatjana von Rosen, Dietrich von Rosen, and Julia Volaufova

Applications of the Vandermonde matrix in statistics . . . . . . . . . 99
Dietrich von Rosen

Tools for numerical inversion of the characteristic functions
and their applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Viktor Witkovský

Both residual errors accurate algorithm for inverting general
tridiagonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Paweł Keller and Iwona Wróbel

Problems of inference in a special multivariate linear model . . 102
Ivan Žežula, Daniel Klein, and Anuradha Roy

A Sub-Stiefel Procrustes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
João R. Cardoso and Krystyna Ziętak

Application of Jordan algebra and its inference in linear models104
Roman Zmyślony

Part VII. Posters

On parallel sum of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Péter Berkics

Models for stochastic symmetric matrices . . . . . . . . . . . . . . . . . . . . . 110
Cristina Dias, Carla Santos, Célia Nunes, and João T. Mexia

Part VIII. Jaroslav Zemánek in memoriam

Tribute to Yaroslav Zemánek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Natalia Bebiano

My meetings with Jaroslav Zemánek – the way I remember
them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Andrzej Sołtysiak

Mathematics – the borderless passion of Jaroslav Zemánek . . . 115
Iwona Wróbel



8

Matrices which Jaroslav Zemánek loved . . . . . . . . . . . . . . . . . . . . . . 118
Krystyna Ziętak

Part IX. List of Participants

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



Part I

Introduction





11

The International Conference on Matrix Analysis and its Applications,
MAT TRIAD 2017, which is the 7th from the MatTriad series, will be held
on September 25-29, 2017 in Będlewo (neighborhood of Poznań, Poland) at
the Mathematical Research and Conference Center of the Polish Academy of
Sciences.
MatTriad provides an opportunity to bring together researchers sharing an
interest in a variety of aspects of matrix analysis and its applications in other
areas of science.
Matrix theory is used in almost all other parts of mathematics and all areas
to which mathematics is applied, and, in return, other parts of mathematics
can be very useful in proving things about matrices, sometimes things that
are very difficult or impossible to prove using conventional matrix theoretic
methods. For example there are many topics in which graph theory is useful in
matrix theory, and, on the other hand, matrix theory is an indispensable tool
in graph theory. Yet another connection is related to polynomials (possibly
in several variables) that take on positive values only. This involves many
matrix problems both ways. Many advances have been made recently, both
theoretical and practical (connections with semidefinite programming), with
a lot of discussion between matrix people and others mathematicians.
Researchers and graduate students interested in recent developments in ma-
trix and operator theory and computation, spectral problems, applications
of linear algebra in statistics, statistical models, matrices and graphs as well
as combinatorial matrix theory are particularly encouraged to attend the
conference. The format of the meeting will join together plenary talks and
sessions with contributed talks. The list of invited speakers will be opened
by the winners of the Young Scientists Awards of MAT-TRIAD 2015 (YSA
2015) promoted by the conference. We are also planning two short courses
delivered by experienced lecturers for graduate students as well as others
conference participants.
The work of young scientists continues to have a special position in the MAT-
TRIAD 2017. The best talk / best poster of graduate students or scientists
with a recently completed Ph.D. will be awarded. Prize-winning works will
be widely publicized and promoted by the conference.
Covered topics:
- Spectral properties of matrices
- Matrix computations and numerical linear algebra
- Matrix inequalities
- Matrices and graphs
- Matrix polynomials
- Positive and nonnegative matrices
- Linear algebra in statistics
- Stable matrices
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Call for Papers

We are pleased to announce a Special Issue of ELA - Electronic Journal
of Linear Algebra devoted to MatTriad’2017. It will include selected papers
strongly correlated to the talks presented during the conference.

Guest Editors:
Oskar M. Baksalary (Poland)
Natália Bebiano (Portugal)
Heike Faßbender (Germany)
Simo Puntanen (Finland)

All papers submitted must meet the publication standards of ELA (see:
http://repository.uwyo.edu/ela) and will be subject to normal refereeing
procedure. Authors should submit a paper through the ELA portal or to one
of the special editors and clearly indicate that the paper is to be considered
for this special volume. The deadline for submission of papers is the end of
December, 2017.

Organizers:

• Banach Center, Institute of Mathematics, Polish Academy of Sciences,
Poland

• Faculty of Mathematics and Computer Science, Adam Mickiewicz Uni-
versity, Poznań, Poland

• Institute of Socio-Economic Geography and Spatial Management, Adam
Mickiewicz University, Poznań, Poland

• Department of Mathematical and Statistical Methods, Poznań University
of Life Sciences, Poland

Committees

The Scientific Committee for this Conference comprises

• Natália Bebiano (Portugal)
• Ljiljana Cvetković (Serbia)
• Heike Faßbender (Germany)
• Simo Puntanen (Finland)
• Tomasz Szulc – Chair (Poland)

The Organizing Committee comprises
• Katarzyna Filipiak (Poland)
• Francisco Carvalho (Portugal)
• Jan Hauke (Poland)
• Augustyn Markiewicz – Chair (Poland)
• Aneta Sawikowska (Poland)
• Dominika Wojtera-Tyrakowska (Poland)
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Invited lectures:

• Lynn R. LaMotte (USA):
Deconstructing type III

• Fuzhen Zhang (USA):
Tensors and some combinatorial properties of tensors

Invited speakers:

• Narayanaswamy Balakrishnan (Canada):
Multivariate stochastic comparisons in actuarial science and appli-
cations

• Andreas Frommer (Germany):
Computing f(A)b, the action of a matrix function on a vector

• Volker Mehrmann (Germany):
The distance to instability and singularity for structured matrix pencils

• K. Manjunatha Prasad (India):
Introduction to rank-function and its applications

• Mirloslav Rozložník (Czech Republic):
Numerics of the Gram-Schmidt process and its relation to the SR
decomposition

Winners of YSA 2015:

• Jolanta Pielaszkiewicz (Sweden):
On negative spectral moments using asymptotic freeness of matrices

• Ernest Šanca (Serbia):
Robust dynamics of real systems based on the pseudospectra
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Monday, September 25, 2017

8:50 – 9:00 Opening

Invited Session 1

9:00 – 9:45 Volker Mehrmann: The distance to instability and sin-
gularity for structured matrix pencils

9:45 – 10:00 Break

Lecture 1, part I

10:00 – 11:15 Fuzhen Zhang: Tensors and some combinatorial proper-
ties of tensors

11:15 – 11:40 Coffee Break

Special Session 1, part I – Interval Matrices

11:40 – 12:10 Milan Hladík: AE regularity of interval matrices
12:10 – 12:35 Jaroslav Horáček: Application of interval linear algebra

in data estimation
12:35 – 13:00 Jan Bok: Interval pseudoinverse matrices

13:00 – Lunch

Invited Session 2

15:00 – 15:45 K. Manjunatha Prasad: Introduction to rank-function
and its applications

15:45 – 16:10 Coffee Break

Special Session 2, part I – Matrix Methods in Linear Models

16:10 – 16:40 Daniel Klein: Estimation of parameters under the mul-
tilevel multivariate models

16:40 – 17:10 Dietrich von Rosen: Applications of the Vandermonde
matrix in statistics

17:10 – 17:40 Charles Rohde: Robustness in the multivariate Gaussian
distribution

17:40 – 17:50 Break

Special Session 3, part I – Total Positivity

17:50 – 18:25 Jürgen Garloff: Recent applications of the Cauchon al-
gorithm to the totally nonnegative matrices

18:25 – 18:50 Mikhail Tyaglov: Root location of polynomials with to-
tally nonnegative Hurwitz matrix

18:50 – 19:15 Alexander Dyachenko: Hurwitz and Hurwitz-type matri-
ces of two-way infinite series

19:30 – Barbecue
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Tuesday, September 26, 2017

Invited Session 3

9:00 – 9:45 Miroslav Rozložník: Numerics of the Gram-Schmidt pro-
cess and its relation to the SR decomposition

9:45 – 10:00 Break

Lecture 1, part II

10:00 – 11:15 Fuzhen Zhang: Tensors and some combinatorial proper-
ties of tensors

11:15 – 11:40 Coffee Break

Special Session 2, part II – Matrix Methods in Linear Models

11:40 – 12:10 Julia Volaufova: Fixed effects estimation in two-variance
components models

12:10 – 12:40 Roman Zmyślony: Application of Jordan algebra and its
inference in linear models

12:40 – 13:00 Célia Nunes: Normal approximations for vec, trace and
determinant of noncentral Wishart matrices

13:00 – Lunch

15:00 – 15:45 Poster session

Péter Berkicks: On parallel sum of matrices
Célia Nunes: Models for stochastic symmetric matrices

15:45 – 16:10 Coffee Break

Contributed Session 1

16:10 – 16:40 Süleyman Solak: On circulant matrices with Ducci se-
quences and Fibonacci numbers

16:40 – 17:00 Osman Kan: Commutators and matrix functions
17:00 – 17:20 Mandeepa Saha: Generalized Jacobi and Gauss-Seidel

method for solving non-square linear systems
17:20 – 17:40 Ryo Tabata: Immanant inequalities on correlation ma-

trices and Littlewood-Richardson’s correspondence

17:40 – 17:50 Break

Special Session – Jaroslav Zemánek in memoriam

17:50 – Andrzej Sołtysiak, Iwona Wróbel, Krystyna Ziętak, ...

19:30 – Dinner

20:30 – Concert
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Wednesday, September 27, 2017

Invited Session 4

9:00 – 9:45 Andreas Frommer: Computing f(A)b, the action of a
matrix function on a vector

9:45 – 10:00 Break

Lecture 2, part I

10:00 – 11:15 Lynn R. LaMotte: Deconstructing type III

11:15 – 11:40 Coffee Break

Special Session 3, part II – Total Positivity

11:40 – 12:05 Àlvaro Barreras: Extending accurate computations for
totally positive matrices

12:05 – 12:30 Akiko Fukuda: Integrable eigenvalue algorithms for to-
tally nonnegative matrices

12:30 – 12:55 Kanae Akaiwa: Solving inverse eigenvalue problems for
totally nonnegative matrices with finite steps

13:00 – Lunch

14:00 – Excursion

Thursday, September 28, 2017

Invited Session 5

9:00 – 9:45 Jolanta Pielaszkiewicz: On negative spectral moments
using asymptotic freeness of matrices

9:45 – 10:00 Break

Lecture 2, part II

10:00 – 11:15 Lynn R. LaMotte: Deconstructing type III

11:15 – 11:40 Coffee Break

Special Session 1, part II – Interval Matrices

11:40 – 12:00 Michal Černý: A Branch-and-Bound scheme for the
range of rank-deficient quadratic forms with interval-
valued variables

12:00 – 12:20 David Hartman: Tightening bounds on the radius of
nonsingularity

12:20 – 12:40 Josef Matějka: Determinants of interval matrices
12:40 – 13:00 Iwona Skalna: A new method for determining the radius

of regularity of parametric interval matrices
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13:00 – Lunch

Invited Session 6

15:00 – 15:45 Ernest Šanca: Robust dynamics of real systems based on
the pseudospectra

15:45 – 16:10 Coffee Break

Special Session 2, part III – Matrix Methods in Linear Models

16:10 – 16:40 Viktor Witkovský: Tools for numerical inversion of the
characteristic functions and their applications

16:40 – 17:00 Arkadiusz Kozioł: Best unbiased estimates for param-
eters of three-level multivariate data with doubly ex-
changeable covariance structure

17:00 – 17:20 Monika Mokrzycka: Kronecker product approximation
via entropy loss function

17:20 – 17:40 AdamMieldzioc: On projection of a positive definite ma-
trix on a cone of non-negative definite Toeplitz matrices

17:40 – 17:50 Break

Contributed Session 3

17:50 – 18:10 Pieter-Jan Pauwelyn: Neglecting non-diagonalizable ma-
trices in social sciences

18:10 – 18:30 Terrence Teh: Sums of H-unitary matrices
18:30 – 18:50 Mika Mattila: Studying the inertias of LCM matrices
18:50 – 19:10 Roksana Słowik: Infinite matrices and the Jordan form

20:00 – Conference Dinner

Friday, September 29, 2017

Invited Session 7

9:00 – 9:45 Narayanaswamy Balakrishnan: Matrix orders and
stochastic orderings in actuarial science

9:45 – 10:00 Break

Contributed Session 3

10:00 – 10:30 Natalia Bebiano: Density matrices arising from incom-
plete measurements

10:30 – 11:00 Damjana Kokol Bukovšek: Linear spaces of symmetric
nilpotent matrices

11:00 – 11:20 Blaž Mojškerc: Jordan triple product homomorphisms
on triangular matrices to and from dimension one
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11:20 – 11:40 Coffee Break

Contributed Session 4

11:40 – 12:10 Susana Furtado: Bruhat order for symmetric (0,1)-
matrices

12:10 – 12:40 Krystyna Ziętak: Sub-Stiefel Procrustes problem
12:40 – 13:00 Iwona Wróbel: Both residual errors accurate algorithm

for inverting general tridiagonal matrices

13:00 – Lunch

Special Session 2, part IV – Matrix Methods in Linear Models

15:00 – 15:30 João T. Mexia: Confidence regions and tests for normal
models with orthogonal block structure: pivot variables

15:30 – 16:00 Ivan Žežula: Problems of inference in a special multi-
variate linear model

16:00 – 16:30 Coffee Break

Special Session 2, part V – Matrix Methods in Linear Models

16:30 – 17:00 Simo Puntanen: More about linear sufficiency in the lin-
ear mixed model

17:00 – 17:20 Mariusz Grządziel: On nonnegative minimum biased
quadratic estimation in the linear regression models

17:20 – 17:30 Break

Special Session 2, part VI – Matrix Methods in Linear Models

17:30 – 18:00 Katarzyna Filipiak: Properties of partial trace and block
trace operators of partitioned matrices

18:00 – 18:20 Richard Ellard: Diagonal elements in the nonnegative
inverse eigenvalue problem

18:20 – 18:40 Jan Hauke: Algebraic properties of some contingency ta-
bles

18:40 – Closing

19:00 – Dinner
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Deconstructing type III

Lynn R. LaMotte

LSU Health - New Orleans U.S.A.

R. A. Fisher expounded analysis of variance (ANOVA) for settings in which
responses are observed under experimental conditions described by combi-
nations of levels of one or more factors. For two factors, ANOVA partitions
differences among cell means into three groups, “variation between classes of
type A and between classes of type B” and “interaction of causes” (Fisher
1938, p. 240), commonly named A and B main effects and AB interaction
effects. This scheme extends readily, resolving differences for f factors into
2f − 1 effects. For three factors, for example, the effects are the three main
effects, three two-factor interaction effects, and the three-factor interaction
effect.
ANOVA quickly became the main statistical methodology in diverse disci-
plines. It provides concepts and terminology that have become a common
language of applied statistics.
In balanced models, with equal numbers of observed responses over all factor-
level combinations (FLCs or cells), sums of squares (SSs) for statistics to test
the effects have simple formulations, and computing them is straightforward.
Their distributional properties (assuming normally-distributed responses) are
apparent.
The situation is unsettled for unbalanced models and settings in which there
are no observations in some cells. ANOVA SSs do not provide appropriate
test statistics. While there is no theoretical impediment to mimicking the
balanced-model partition, the results are less (often un-) informative because
some or all subspaces of effects are not estimable. No statistical computing
package, as far as I know, takes this approach.
Most packages use Type III SSs to produce an ANOVA-like partition of
effects. Type III was introduced by SAS in the 1970s: see Goodnight (1976)
and SAS (1978). It is defined by an algorithm; the process begins and ends
with a set of rules for formulating the Type III estimable functions of an
effect. No hypothesis is formulated. The SS for an effect is the squared norm
of the orthogonal projection of the vector of observed responses onto the
space of Type III estimable functions.
The lack of a compact mathematical definition of Type III SSs gives them a
mystical, black-box aura. A system of beliefs has evolved. For example, it is
widely asserted that Type III SSs are the same as ANOVA SSs in balanced
models, and that they test ANOVA-effect hypotheses in unbalanced models
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if there are no empty cells. Proofs of these assertions do not exist. Apparently
what is thought to be known about Type III is based only on experience and
observation.
My objective in this lecture is to provide an explicit formulation of Type III
estimable functions and SSs and to establish their properties. It is shown that
what is believed to be true, is true, when all of an effect is estimable, but not
otherwise.

Keywords
ANOVA, Factor effects.

References

[1] Fisher, R.A. (1938). Statistical Methods for Research Workers, 7th Edition.
Oliver and Boyd, London.

[2] Goodnight, J.H. (1976). The general linear models procedure. Proceedings of
the First International SAS User’s Group. SAS Institute Inc., Cary, NC.

[3] SAS Institute Inc. (1978). SAS Technical Report R-101, Tests of hypotheses in
fixed-effects linear models. SAS Institute Inc., Cary, NC.
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Tensors and some combinatorial properties of
tensors

Fuzhen Zhang

Nova Southeastern University, Fort Lauderdale, Florida, USA

Abstract: We begin with the definition of a tensor (in algebra) and then focus
on the tensors by which we mean multi-dimensional arrays (or hypermatrices)
of real numbers. A square matrix is doubly stochastic if its entries are all
nonnegative and each row and column sum is 1. A celebrated result known
as Birkhoff’s theorem about doubly stochastic matrices states that an n× n
matrix is doubly stochastic if and only if it is a convex combination of some
n×n permutation matrices (a.k.a Birkhoff polytope). The Birkhoff polytope
of n × n stochastic matrices in Rn2

is of dimension (n − 1)2 with n2 facets
and n! vertices.
We consider the generalization of the Birkhoff’s theorem in higher dimen-
sions. An n×n×n stochastic tensor is a nonnegative array (hypermatrix) in
which every sum over one index is 1. A permutation tensor can be identified
with a Latin square (vice versa). We study the polytope of all these tensors,
the convex set of all tensors with some positive diagonals, and the polytope
generated by the permutation tensors. We present lower and upper bounds
for the number of vertices of the polytopes, and discuss further questions on
the topic.
Determinant and permanent are basic and important functions of n× n ma-
trices. We attempt to define these for tensors. More generally, we will consider
defining the generalized matrix functions for tensors.

Keywords
Birkhoff polytope, Doubly stochastic matrix, Extreme point, Hypermatrix,
Polytope, Stochastic semi-magic cube, Stochastic tensor, Tensor, Vertex.
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Multivariate stochastic comparisons in
actuarial science and applications

Narayanaswamy Balakrishnan

McMaster University, Hamilton, Canada

In this talk, I will first introduce the notions of univariate stochastic orderings,
a technique by which two random variables can be compared. I will then
describe some multivariate orderings. I will then consider the total claim
amount from two portfolios in an actuarial setup and apply these univariate
and multivariate orderings to present some results. Finally, I will also present
a multivariate stochastic ordering result for the whole set of order statistics
drawn from a distribution. I will present some illustrative examples through
out to explain the results obtained.
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Computing f(A)b, the action of a matrix
function on a vector

Andreas Frommer

Bergische Universität Wuppertal, Germany

Let A be a square matrix and f a function that is sufficiently smooth on the
spectrum of A. Then the matrix function f(A) is defined as p(A), where p
is the polynomial that interpolates f on the spectrum of A in the Hermite
sense. Practically, it is impossible to compute fA) when A is big and sparse,
while it is still possible to compute f(A)b, b a vector.
In our talk we will address Krylov subspace techniques for computing f(A)b.
The emphasis will be on stable restart procedures, which are mandatory even
in the case that A is Hermitian, and on convergence theory. We will dedicate
a large part of the talk to extensions to block methods, where one is interested
in f(A)B, the columns of B representing several vectors b. In this contect
we develop a fairly general theory for a class of block Krylov methods which
comprises several different block methods considered in the literature before.
We will again focus on restart procedures and convergence analysis.
This talk is based on joint work with Stefan Güttel, Kathryn Lund, Marcel
Schweitzer and Daniel B. Szyld.

Keywords
Matrix functions, Krylov subspaces, Stability, Block methods, Convergence
analysis, Stieltjes functions.
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The distance to instability and singularity for
structured matrix pencils

Volker Mehrmann

Technishe Universität Berlin, Germany

The stability analysis of dynamical systems leads to the eigenstructure analy-
sis of matrix pencils λE−A. The associated system is asymptotically stable if
the pencil is regular, all finite eigenvalues are in the left half plane and the in-
finite eigenvalues are semisimple. There are several challenging open problems
that will be discussed. The first is the distance to instability, i.e. the smallest
perturbation to E and A that puts an eigenvalue on the imaginary axis, or
makes the pencil singular. For the first question there are well-known meth-
ods but the second problem is still open, although progress has been recently
made, [5,2]. When the problem is structured such as in port-Hamiltonian
systems the distance to instability is much larger than for the unstructured
case [3,4]. This opens a lot of opportunities to exploit the structure to the
advantage of robustness of a system under perturbation. We also discuss the
converse problem of finding the distance to the boundary of the stable pencils
for a given unstable pencil [1].
This presents joint work in different publications with N. Gillis, N. Guglielmi,
C. Lubich, C. Mehl, P. Sharma, and M. Wojtylak.

Keywords
Distance to instability, Distance to the nearest singular pencil, Nearest stable
pencil, Structured distances, Port-Hamiltonian system.
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On negative spectral moments using asymptotic
freeness of matrices

Jolanta Pielaszkiewicz

Linnaeus University, Växjö, Sweden

There is a number of matrices that are proven to be asymptotically free. For
such matrices additive properties of R-transform (free cumulant generation
function) can be used to derive number of results related to negative spectral
moments. Some particular matrix polynomials will be considered with the
special interest in polynomials in Wishart matrices. Relation between the
spectral moment generating function of matrix and its inverse and closed
form expression for R-transform of Inverse Wishart matrix will be given. The
talk will be illustrated with comparison of theoretical and simulations results.

Keywords
Negative moments, Wishart matrix, Trace, Freeness, R-transform.
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Introduction to rank-function and its
applications

Nayan Bhat, K. Manjunatha Prasad, and Nupur
Nandini

Manipal University, India

The notion of ‘rank of a matrix’ as defined by ‘the dimension of subspace
generated by columns of that matrix’ over any field has limitation to be
considered for a matrix over any other algebraic structure. The ‘determinantal
rank’ defined by the size of largest submatrix having nonzero determinant,
which is in fact equivalent to the column rank for any matrix over a field, was
considered to be an alternative for the class of matrices over a commutative
ring. Even this determinantal rank or the McCoy rank are not so efficient in
describing several properties of matrices like in the case of solvability of linear
system. In the present talk, we discuss the introduction of ‘rank function’
associated with the matrix as defined in [4] and its characteristics. Also, we
present rank condition for the existence of Drazin inverse for a square matrix
over a commutative ring.

Keywords
Rank, Determinantal rank, Rank function, Generalized inverse, Drazin in-
verse.
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Numerics of the Gram-Schmidt process and its
relation to the SR decomposition

Miroslav Rozložník

Czech Academy of Sciences, Prague, Czech Republic

In this contribution we first consider the most important schemes used for or-
thogonalization with respect to the standard and non-standard inner product
and briefly review the main results on their behavior in finite recision arith-
metic. We treat separately the particular case of the standard inner product
and show that similar results hold also for the case when the inner product
is induced by a positive diagonal matrix. We will show that in the general
case of non-standard inner product the conditioning of computed factors de-
pends not only on the conditioning of initial vectors but it depends also on the
condition number of the matrix that induces the non-standard inner product.
We also study the orthogonalization schemes for computing vectors that are
mutually orthogonal with respect to the bilinear form induced by a symmetric
nonsingular but indefinite matrix. Under assumption on strong nonsingularity
of this matrix we develop bounds for the extremal singular values of the
triangular factor that comes from is symmetric indefinite factorization. It
appears that they depend on the the extremal singular values of the matrix
and of only those principal submatrices where there is a change of sign in the
associated subminors. Using these results we analyze two types of schemes
used for orthogonalization and we give the worst-case bounds for quantities
computed in finite precision arithmetic. In particular, we consider Cholesky
QR implementation based on the Cholesky-like factorization and the Gram-
Schmidt process with respect to this bilinear form. We consider also their
versions with reorthogonalization and with one step of iterative refinement.
Finally we discuss the extension of this theory to the case of skew-symmetric
bilinear forms used in the context of various structure-preserving transforma-
tions. We analyze the freedom of choice in the symplectic and the triangular
factors and review several existing suggestions on how to choose the free
parameters in the SR decomposition.

Keywords

Orthogonalization, Gram-Schmidt process, Indefinite inner product, Skew-
symmetric bilinear form, SR decomposition.
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Robust dynamics of real systems based on the
pseudospectra

Ernest Šanca

University of Novi Sad, Serbia

The traditional approach to the stability analysis of the equilibria of real dy-
namical systems is based on Lyapunov stability, which consists of determining
the position of the eigenvalues of the Jacobian in the complex plane. Such
dynamical properties are primarily asymptotic in nature, therefore requiring
usually long time scales for their realization. Additionally, potential transient
behavior, which may violate the initial integrity of the system itself, when it
is generating a functional response to the change it is facing, as well as the
potential structural changes of the system itself, cannot be analyzed based
on the expected asymptotic behavior only. The unity of rich mathematical
theory, powerful theory of matrices and theory of dynamical systems offers
knowledge regarding the existence of special matrix structures that are prone
to high sensitivity of spectral properties, such as stability, in the presence of
small perturbations. Moreover, this affectability to small perturbations in
particular, is known to correspond to the effects of transient instability of
otherwise asymptotically stable dynamical systems. Powerful mathematical
tool that has been especially designed so as to provide better understanding
of the aforementioned phenomena and adequate tool for its advanced anal-
ysis is known under the name pseudospectra. Stability indicators developed
so far, exploiting the spectral properties of a matrix or the concept of GDD
matrices, are simply lacking power and display drawbacks, thus providing
motivation for the introduction of advancements as far as the methodology
of the dynamical stability description is concerned, with the transient behav-
ior under the functional changes in mind in the first place, highlighting the
essence of pseudospectra.
This lecture aims to present concepts essentially familiar to Lyapunov stabil-
ity of dynamical systems, which on one hand possess the necessary flexibility
of applications in various fields of science, and the desired potential to de-
scribe complex stability aspects of real systems on the other hand. Ultimately,
efficient numerical methods in determining these generalized aspects of sta-
bility, based on empirical data, so as to enable practical applications of novel
concepts, shall be presented. Finally, the desired possibility of implementa-
tion and utilization of developed concepts in the multidisciplinary ambiance
including physics, ecology, medicine, chemistry, engineering, economy and
many more, shall be discussed.
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Special Session on Total Positivity

Jürgen Garloff

University of Applied Sciences, Konstanz, Germany
University of Konstanz, Germany

The concept of total positivity is rooted in classical mathematics where it can
be traced back to works of Schoenberg on variation diminishing properties
and of Gantmacher and Krein on small oscillations of mechanical systems.
Since then the class of totally positive matrices and operators proved to be
relevant in such a wide range of applications that over the years many distinct
approaches to total positivity, amenable to a particular notion, have arisen
and advocated by many prominent mathematicians. This area is, however,
not just a historically significant subject in mathematics, but the one that
continues to produce important advances and spawn worth-wile applications.
This is reflected by the topics which will be covered by the speakers of the
Special Session, viz. the study of classes of matrices related to total posi-
tivity, accurate computations based on bidiagonalization, inverse eigenvalue
problems, log-concavity, and the location of the roots of polynomials.

Keywords
Total positivity, Bidiagonalization, Inverse eigenvalue problems, Location of
the roots of polynomials, log-concavity.

Invited speakers:
K. Akaiwa, A. Barreras, A. Dyachenko, A. Fukuda, M. Tyaglov.
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Special Session on Interval Matrices

Milan Hladík

Charles University, Czech Republic

An interval matrix is defined as a set of matrices lying entrywise between
two given matrices. An interval matrix is a fundamental notion in interval
computation, which is focused on rigorous computation with real or interval
data. The key property of interval computation is the "enclosing property",
guaranteeing that all possible realizations of interval data and all roundoff
errors are taken into account. Due to this property, interval computation is
an important tool in verification in numerical analysis, global optimization,
constraint programming and many other areas. Therefore, handling interval
matrices is a very frequent problem in interval computation since one often
needs to verify some matrix property (nonsingularity etc.), approximate its
eigenvalues, or solve an interval linear system of equations.
This special session will be devoted to investigation of various properties of
interval matrices, including theoretical characterization, developing efficient
algorithms, classification in the computational complexity sense, as well as
solving interval linear systems of equations and the related problems.

Invited speakers:
J. Bok, M. Černý, D. Hartman, J. Horáček, J. Matějka.
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Special Session on Matrix Methods in Linear
Models

Daniel Klein

P. J. Šafárik University, Košice, Slovakia

Linear models are everywhere in data analysis. In spite of the availability of
highly innovative tools in statistics, the linear models are still widely studied
by statisticians. Even the most effective multivariate models appear to be the
linear ones. To describe these models it is most efficient with matrix algebra,
it is the language of modern analysis. Also the study of various concepts
would be tedious without matrix algebra.
This special session will be devoted to estimation and testing problems in
multivariate and mixed linear models, where the application of matrix algebra
and tensor operators plays a crucial role. The results on determination of
estimators of unknown parameters, on characterization of their properties or
comparison of different estimators, as well as procedures of testing hypotheses
devoted to structured mean or variance-covariance matrix are mostly welcome
to this session.

Invited speakers:
K. Filipiak, J. T. Mexia, D. von Rosen, J. Volaufova, R. Zmyślony.
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Solving inverse eigenvalue problems for totally
nonnegative matrices with finite steps

Kanae Akaiwa

Kyoto Sangyo University, Japan

Inverse eigenvalue problems include a problem of constructing structured ma-
trices with prescribed eigenvalues. Construction of totally nonnegative (TN)
matrices, whose minors are all nonnegative, with prescribed eigenvalues is an
important topic of inverse eigenvalue problems. In this talk, it is clarified that
an inverse eigenvalue problem for TN matrices is closely related with some
integrable systems, where integrable systems mean dynamical systems which
have exact solutions. In particular, it is shown that TN matrices with pre-
scribed eigenvalues can be constructed in finite steps with the help of discrete
integrable systems such as the discrete Toda equation.
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Extending accurate computations for totally
positive matrices

Àlvaro Barreras1 and Juan M. Peña2

Universidad de Zaragoza, Spain

It is known that for totally positive matrices, their bidiagonal decomposition
is an adequate parametrization in order to carry out accurate computations.
Given these parameters, it is possible to perform subtraction- free algorithms
to compute the inverse matrix, eigenvalues and singular values (see [7]). In
this talk we recover the method presented in [2] to extend these algorithms to
ε-SBD matrices, a class of matrices that contains not only totally positive ma-
trices but also their inverses (see also [1]). We also extend the results of Koev
(cf. [7]) to new classes of matrices, preserving the accuracy independently of
its conditioning (see [3]). Joint work with Juan Manuel Peña.

References

[1] Barreras, A. and J.M. Peña (2012). Bidiagonal decomposition, minors and ap-
plications. Electron. J. Linear Algebra 25, 60–71.

[2] Barreras, A. and J.M. Peña (2013). Accurate computations of matrices with
bidiagonal decomposition using methods for totally positive matrices. Numer.
Linear Algebra Appl. 20, 413–424.

[3] Barreras, A. and J.M. Peña (2016). Similarity to totally positive matrices and
accurate computations. Linear Algebra Appl. 491, 317–327.

[4] Koev, P. (2007). Accurate computations with totally nonnegative matrices.
SIAM J. Matrix Anal. Appl. 29, 731–751.



N. Bebiano 55

Density matrices arising from incomplete
measurements

Natalia Bebiano

University of Coimbra, Portugal

In this paper, the following problem is considered: given two Hermitian matri-
ces H and K and two real numbers x and y, determine a positive semidefinite
matrix ρ such that the von Neumann entropy −Trρ log ρ is maximum, sub-
ject to the condition that TrρH = x and TrρK = y. This question arises
in information theory and in statistical mechanics in connection with the
maximum-entropy inference principle. To answer it, we use this principle and
numerical range methods.
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Interval pseudoinverse matrices

Jan Bok and Milan Hladík

Charles University, Prague, Czech Republic

One of the main problems in interval linear algebra is to decide for some
given interval matrix if it is regular. An interval matrix is regular if all its
selections are regular. In classic linear algebra, a natural approach in the
case that a given matrix is singular is to find a pseudoinverse matrix which
is in some sense very close to being the inverse matrix. The most widely used
notion is the Moore-Penrose pseudoinverse matrix. This type of matrix can
be generalized to interval matrices as well.
We will talk about our recent results on interval pseudoinverse matrices.
We will present both theoretical and experimental results regarding different
approaches to interval pseudoinverse computation and its tightness. We will
compare our results with the work of Saraev [1], to our knowledge the only
existing paper dealing with interval pseudoinverse so far.

Keywords
Interval analysis, Interval matrix, Pseudoinverse.

References

[1] Saraev, P.V. (2013). Interval pseudo-inverse matrices and interval Greville al-
gorithm. Reliab. Comput. 18, 147–156.



M. Černý 57

A Branch-and-Bound scheme for the range
of rank-deficient quadratic forms with

interval-valued variables

Michal Černý1, Miroslav Rada1, and Milan Hladík1,2

1 University of Economics, Prague, Czech Republic
2 Charles University, Prague, Czech Republic

Given a quadratic form f(x) = xTQx and bounds x ≤ x ≤ x for its vari-
ables, we address the problem of computing the range f = minx≤x≤x f(x) and
f = maxx≤x≤x f(x). First we address the case when Q is positive semidef-
inite. Then the lower bound f can be computed efficiently via CQP, while
computation of the upper bound f is NP-hard. We focus on the case when
Q is rank-deficient. We reformulate the computation of f as a problem of
enumeration of vertices of a zonotope in d-dimensional space [4], where d =
rank(Q). Instead of constructing the enumeration of vertices in full (as in
[1,5]), we design a B&B scheme. The branching step consists in a split of
a zonotope into a pair of “smaller” zonotopes by removal of a generator. In
the bound-part, we use Goffin’s method [2] to approximate a zonotope by a
pair of Löwner-John ellipsoids. Then, the lower and upper bound for f over
an ellipsoid is computed by Ye’s algorithm [6] for optimization of (arbitrary)
quadratic forms over ellipsoids. We also discuss the impact of various strate-
gies for the choice of (i) the active zonotope, (ii) the branching generator and
(iii) the method for computation of lower bounds.
The general case, when Q need not be positive semidefinite (but is still rank-
deficient), can be reduced to the problem of enumeration of all k-dimensional
faces of a 2d-dimensional zonotope, where k = 0, 1, . . . , 2d. This can be done
by zonotope enumeration algorithms [3]. We design a B&B strategy for this
case, too. Here, the branching step consists in replacement of a zonotope by
a pair of zonotopes with a shorter generator. The bounding step is similar
to the psd case. This B&B scheme generates a potentially infinite branching
tree with a branch converging to the maximizer/minimizer. Cutting the tree
at a certain level allows us to compute an ε-approximate solution.

Keywords

Quadratic form, Interval data, Zonotope, Branch and Bound.
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Hurwitz and Hurwitz-type matrices of two-way
infinite series

Alexander Dyachenko

Technische Universität Berlin, Germany

A function is stable or Hurwitz-stable if all its zeros lie in the left half of the
complex plane. The classical approach to the Hurwitz stability (dating back
to Hermite and Biehler) exploits a deep relation between stable functions and
mappings of the upper half of the complex plane into itself (i.e. R-functions).
Hurwitz introduced a connection between minors of the Hurwitz matrix and
the Hankel matrix built from coefficients of the corresponding R-function
(moments), which resulted in the famous Hurwitz criterion.
More recent studies [1,6] highlighted another property related to the Hurwitz
stability: the total nonnegativity of corresponding Hurwitz matrices, that is
nonnegativity of all their minors. The paper [2] extends the criterion [5] to
a complete description of power series (singly infinite or finite) with totally
nonnegative Hurwitz matrices. During my talk, I am going to extend this
result further to two-way (i.e. doubly) infinite power series. The corresponding
general case of the necessary conditions [4, Theorem 4] for total nonnegativity
of generalized Hurwitz matrices follows as an application.
The study is prompted by the criterion [3], because each Hurwitz matrix is
built from two Toeplitz matrices. The essential connection to Hankel matrices
breaks here (no correspondent Stieltjes continued fraction), and thus the
doubly infinite case requires an approach distinct from the singly infinite
case.

Keywords
Total positivity, Pólya frequency sequence, Hurwitz matrix, Generalized Hur-
witz matrix, Doubly infinite series.
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Diagonal elements in the nonnegative inverse
eigenvalue problem

Richard Ellard and Helena Šmigoc

University College Dublin, Ireland

We say that a list of complex numbers is realisable if it is the spectrum of
some (entrywise) nonnegative matrix. The Nonnegative Inverse Eigenvalue
Problem (NIEP) is the problem of characterising all realisable lists.
Although the NIEP remains unsolved, it has been solved in certain cases. In
particular, the solution is known if the list contains at most three elements
or if every entry in the list (apart from the Perron eigenvalue) has nonpos-
itive real part. In these cases, if a realising matrix is known to exist, one
may ask what the possible diagonal elements of said matrix are. For a given
realisable spectrum, we show that a list of nonnegative numbers may arise
as the diagonal elements of the realising matrix if and only if these numbers
satisfy a remarkably simple inequality. The realising matrices employed are
of a similar form to companion matrices, but with arbitrary diagonal.
This work is motivated by some earlier work of Šmigoc, who showed that
diagonal elements are of importance to constructive methods in the NIEP.

Keywords
Nonnegative matrices, Nonnegative inverse eigenvalue problem, Diagonal el-
ements, Companion matrix.



62 K. Filipiak

Properties of partial trace and block trace
operators of partitioned matrices

Katarzyna Filipiak1 and Daniel Klein2

1 Poznań University of Technology, Poland
2 P. J. Šafárik University, Košice, Slovakia

The aim of this paper is to give the properties of two linear operators defined
on pq ×mq partitioned matrix A = (Aij) with q × q blocks Aij :

- partial trace operator, PTrqA = (trAij) (cf. [1]), and
- block trace operator for m = p, BTrqA =

∑p
i=1 Aii.

The conditions for symmetry, nonnegativity, and positive-definiteness of the
operators are given, as well as the relations between partial trace and block
trace operators with standard trace, vectorizing and Kronecker product op-
erators.
Both partial trace and block trace operators can be widely used in statistics,
for example in the estimation of unknown parameters under the multi-level
multivariate models or in the theory of experiments for determination of
optimal designs under linear models.
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Integrable eigenvalue algorithms for totally
nonnegative matrices

Akiko Fukuda

Shibaura Institute of Technology, Japan

There are interesting relationships between eigenvalue algorithms and in-
tegrable systems. Integrable systems are nonlinear differential or difference
equations which can be solved exactly. Based on the integrable discrete hun-
gry Toda molecule equation, we have designed an algorithm for computing
eigenvalues of a class of totally nonnegative matrices [1]. This algorithm can
be regarded as a generalization of the dqds algorithm. In this talk, we focus
on the discrete two-dimensional Toda molecule (d2Toda) equation, which is
a generalization of the discrete hungry Toda molecule equation. We show
that the d2Toda equation can be applied to compute eigenvalues of a class
of totally nonnegative (TN) matrices. Through discrete time evolution of
the d2Toda equation, the d2Toda variables yield the eigenvalues of the TN
matrix. The resulting algorithm can be regarded as an extension of the qd
algorithm. We also show the relationship between another integrable system
and TN matrices, and computation of the eigenvector of the TN matrices.
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Bruhat order for symmetric (0, 1)-matrices
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Extending the Bruhat order for permutation matrices, in [2] a Bruhat order
for the class of m-by-n (0, 1)-matrices with prescribed row and column sum
vectors was defined. Minimal matrices for this Bruhat order (a partial order)
were studied in this paper and in the subsequent paper [1].
In this talk we present some results, obtained in [3], related with the descrip-
tion of the minimal matrices in the Bruhat order for the class of symmetric
(0, 1)-matrices with given row sum vector. We start by giving some prop-
erties of these minimal matrices. We also present minimal matrices in the
Bruhat order for some particular such classes of symmetric (0, 1)-matrices.
Some connections with the term rank of a matrix will be established.
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Recent applications of the Cauchon algorithm
to totally nonnegative matrices

Jürgen Garloff1,2 and Mohammad Adm2,3
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3 University of Regina, Canada

The Cauchon algorithm, see, e.g., [4], has been applied to totally nonnega-
tive matrices in order to characterize these matrices [4] and their subclasses
[1], to recognize totally nonnegative matrix cells [5], and to derive determi-
nantal criteria for this class of matrices [1]. In this talk we report on some
recent applications of this algorithm, e.g., to the study the invariance of total
nonnegativity under element-wise perturbation and the subdirect sum of two
totally nonnegative matrices [2], to the investigation of the interval property
of sign regular matrices, and to the determination of the rank of an arbitrary
matrix [3].

Keywords
Cauchon algorithm, Totally nonnegative matrix, Subdirect sum, Interval prop-
erty, Rank.
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On nonnegative minimum biased quadratic
estimation in the linear regression models

Mariusz Grządziel
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The problem of nonnegative estimation of a parametric function γ(β, σ) =
β′Hβ + hσ2 in the linear regression model M{y,Xβ, σ2I}, where H is a
nonnegative definite matrix and h is a nonnegative scalar, attracted attention
of many researchers. Gnot et al. [2] proposed an approach in which γ is
estimated by a quadratic form y′Ay, where A is a nonnegative definite matrix
that satisfies an appropriate optimality criterion associated with minimizing
the bias of the estimator. Computing the matrix A, which in the general case
is not given explicitly, may be challenging.
A comparison of various approaches for finding A (developed e.g. in [2,1,3])
will be presented. The efficiency of these approaches will be illustrated by
numerical examples.

Keywords
Linear regression model, Nonnegative minimum biased estimators, Mean
squared error.
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Tightening bounds on the radius of
nonsingularity

David Hartman and Milan Hladík
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Evaluating the proximity of a given square matrix to the nearest singular one
can be performed via adopting Chebyshev norm leading to so called radius
of nonsingularity. Let A be a matrix of a form Rn×n and ∆ is non-negative
matrix of the same type, the radius of nonsingularity [2,3] is defined by

d(A,∆) := inf{ε > 0; (∃ singular B)(∀i, j) : |aij − bij | ≤ ε∆i,j}.

There also exists a simplified version of such radius where ∆ is equal to “all
ones matrix” E. Determining exact value of this radius even in its simplified
version is known to be an NP-hard problem [3], which leads to various lower
and upper bounds [4,5]. These bounds, however, are not very tight - one of the
best classical bounds has the relative error 6n. We describe a better one based
on a randomized approximation method with expected error 0.7834 using a
semidefinite relaxation [1] and discuss its possible extensions depending on
various conditions given.
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Algebraic properties of some contingency tables
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A chi-squared test as one of the most popular nonparametric independence
tests can be performed using contingency tables, which summarize the re-
lationship between several categorical variables. From the algebraic point of
view, a contingency table as a two-way table is a matrix of non-negative
integers showing cross-classiffication.
The idea of using such tables for the test was proposed by [2] and is based
on comparing the "distance" of the empirical array of contingencies with its
theoretical counterpart - expressing the full invariance. The properties of the
contingency tables are still in the interest of researchers (see [1]). The aim of
the paper is to analyse some algebraic properties of a square and symmetric
contingency tables as matrices and their theoretically equalized counterparts.
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AE regularity of interval matrices

Milan Hladík
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Consider a linear system of equations with interval coefficients, and each inter-
val coefficient is associated with either a universal or an existential quantifier.
The AE solution set [1–3] is defined by ∀∃-quantification. That is, a vector x
is an AE solution if for every realization of ∀-coefficients there is a realization
of ∃-coefficients such that x solves the corresponding system. Applications of
this approach range from economic models, design problems to static control
systems, among others.
Herein, we deal with the problem what properties must the coefficient matrix
have in order that there is guaranteed an existence of an AE solution. Based
on this motivation, we introduce a concept of AE regularity, which implies
that the AE solution set is nonempty. We discuss characterization of AE
regularity, and we also focus on various classes of matrices that are implicitly
AE regular. Some of these classes are polynomially decidable, and therefore
give an efficient way for checking AE regularity.
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tification.
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Application of interval linear algebra in data
estimation

Jaroslav Horáček, Milan Hladík, and Václav Koucký
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There are various methods handling estimation of interval data. In our talk
we focus mainly on least squares approach which can be solved by means of
(interval) linear algebra. We show and discuss various methods of computing
such estimation. We illustrate this approach on data obtained during chil-
dren lung function diagnostics – multiple-breath washout procedure. Based
on these examples, we discuss what kind of new insight into data interval
estimation methods actually bring.
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Commutators and matrix functions
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Commutator of two matrices is defined by [A,B] = AB −BA where A,B ∈
Mn (C ) and plays an important role in many branches of science. Our aim in
this study is to get some results related to [f (A) , f (B)] by using properties
of matrix commutators and some special matrix functions.
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Estimation of parameters under the multilevel
multivariate models
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The complexity of data has increased greatly over the last decade. Mod-
ern experimental techniques make it possible to collect and store multi-level
multivariate data in almost all fields, in which several characteristics can be
observed on more than one response variable at different locations, repeatedly
over time, at different depths, etc. Such data can be presented in the form of a
multi-index matrix (tensor) Y. The third-order normally distributed tensor of
observations, Y ∈ Rn×p×q is discussed with the mean structured in the form
of a generalized growth curve model, [[X ;A,B,C]], with multiplication in all
three directions of the third-order tensor X of unknown parameters by the
known matrices A, B and C. We present the estimation of an unknown tensor
X of direct effects and a separable and doubly separable variance-covariance
matrix.
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Linear spaces of symmetric nilpotent matrices
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In 1958 Gerstenhaber showed that if L is a subspace of the vector space of the
square matrices of order n over some field F, consisting of nilpotent matrices,
and the field F is sufficiently large, then the maximal dimension of L is n(n−1)2 ,
and if this dimension is attained, then the space L is triangularizable. Linear
spaces of symmetric matrices seem to be first studied by Meshulam in 1989
in view of the bound of their rank. Although it seems unnatural to ask when
a linear space of symmetric matrices is made of nilpotents and when it is
triangualar, we find a way to do so by going to an equivalent notion for
symmetric matrices, i.e. persymmetric matrices. We develop a theory that
enables us to prove extensions of some beautiful classical triangularizability
results to the case of symmetric matrices. Not only the Gerstenhaber’s result,
but also Engel, Jacobson and Radjavi theorems can be extended. We also
study maximal linear spaces of symmetric nilpotents of smaller dimension.
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On some properties of weights matrices used in
spatial analysis

Jan Hauke, Tomasz Kossowski, and Justyna Wilk
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In a spatial analysis, contrary to a standard statistical analysis it is assumed
that nearby georeferenced units are associated in some way. These spatial
relationships are described very often by a spatial weights matrix. The matrix
quantifies the spatial relationship and is usually constructed on the basis of
the contiguity matrix.
The basis for most spatial models is an indicator of whether one region is a
spatial neighbor of another, or equivalent one. The knowledge of this subject
is presented by a square symmetric matrix C with the (i,j)-th element equal
to 1 if regions i and j are the neighbors to one another, and zero if otherwise.
By convention, the diagonal elements of this spatial neighbors matrix are set
to zero.
There is a large number of ways to construct such a matrix (e.g. linear con-
tiguity, rook contiguity, bishop contiguity, queen contiguity). The idea can
be extended to second order measures of contiguity and further. Another ap-
proach is based on the distance between the analyzed objects and can be also
expanded in several ways. In spatial analysis, use is made mostly of slightly
transformed contiguity matrices, usually called spatial weights matrices.
The role of the weight matrix and the question how the spatial analysis is
sensitive to its different choices is discussed by [1] and [2]. In the paper, we
analyze algebraic properties of different types of weight matrices used for
empirical data.
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Best unbiased estimates for parameters of
three-level multivariate data with doubly

exchangeable covariance structure

Arkadiusz Kozioł
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There are analyzed the properties of the estimators of doubly exchangeable
covariance structure for three-level data (m dimensional observation vector
repeatedly measured at u locations and over v time points). This structure
is an extension of the block compound symmetry covariance structure.
Under multivariate normality, the free-coordinate approach is used to obtain
unbiased linear and quadratic estimates for the model parameters. Optimality
of these estimators follows from sufficiency and completeness of their distri-
butions. As unbiased estimators with minimal variance, they are consistent.
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covariance structure.
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Determinants of interval matrices
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In our talk we would like to address determinants of interval matrices – tight-
est interval enclosing determinants of all real matrices contained an interval
matrix. We show some results on complexity of computing and approximat-
ing such interval determinants. Then we introduce various methods based
on preconditioning, Hadamard inequality, Gaussian elimination and Cramer
rule that enables us to compute at least enclosures of interval determinants.
For symmetric matrices we can make use of known enclosures of eigenvalues,
that can help to obtain better enclosures of interval determinant. We also
present numerical properties of mentioned methods.
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Studying the inertia of an LCM matrix
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Let S = {x1, x2, . . . , xn} be a set of distinct positive integers with xi ≤ xj ⇒
i ≤ j. The GCD matrix (S) of the set S is the n× n matrix with gcd(xi, xj)
as its ij entry. Similarly, the LCM matrix [S] of the set S has lcm(xi, xj) as
its ij entry. Both of these matrices were originally defined by H. J. S. Smith
in his seminal paper [4] from the year 1876.
During the last 30 years both GCD and LCM matrices (as well as their
various generalizations) have been investigated extensively in the literature.
However, GCDmatrices are in many ways easier to study than LCMmatrices.
For example, the GCD matrix (S) is positive definite for any set S whereas
the LCM matrix [S] is almost always indefinite and may be even singular.
Very little is known about the inertia of the matrix [S] in general. One can of
course make some additional assumptions about the set S, but still the matrix
[S] remains quite hard to study. In 1992 Bourque and Ligh [1] conjectured
that if the set S is GCD closed (that is, gcd(xi, xj) ∈ S for all xi, xj ∈ S),
then the matrix [S] is nonsingular. A few years later it was shown that this
conjecture holds only for GCD closed sets with at most 7 elements, but not
in general for larger sets (see [2] and [3]).
It turns out that if the set S is GCD closed, then the poset-theoretic semilat-
tice structure of (S, |) often alone determines the inertia of the LCM matrix
[S] completely. This is a bit surprising, since one could expect the exact val-
ues of the elements xi ∈ S to play a bigger role in this. In this presentation
we are going to define a new lattice theoretic concept and use it to give an
explanation to this mystery. We also show some examples how to determine
the inertia of the matrix [S] by looking only at the semilattice structure of
(S, |). At the same time we are able to give an elegant proof to the well-
known result that the Bourque-Ligh conjecture holds for all except for one
GCD closed set with at most 8 elements.
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Möbius inversion.

References

[1] Bourque, K. and S. Ligh (1992). On GCD and LCM matrices. Linear Algebra
Appl. 174, 65–74.



78 M. Mattila

[2] Haukkanen, P., J. Wang, and J. Sillanpää (1997). On Smith’s determinant.
Linear Algebra Appl. 258, 251–269.

[3] Hong, S. (1999). On the Bourque-Ligh conjecture of least common multiple
matrices. J. Algebra 218, 216–228.

[4] Smith, H.J.S. (1875/76). On the value of a certain arithmetical determinant.
Proc. London Math. Soc. 7, 208–212.



J. T. Mexia 79
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Models with Orthogonal Block Structure, OBS, have variance covariance ma-
trices that are linear combinations of pairwise orthogonal projection matrices
that add up to In, that is

V(γ) =

m∑
j=1

γjQj , (1)

see [1] and [2]. These models continue to play an important part in the theory
of randomized block designs and contain the models

Y = X0β +

w∑
i=1

XiZi, (2)

where β is fixed and the Z1, . . . ,Zw are independent, with null mean vec-
tors and variance covariance matrices σ2

i Ici , i = 1, . . . , w, when the matrices
Mi = XiX

>
i commute and R([X1, . . . ,Xw]) = Rn. We will assume normality

to use pivot variables to obtain confidence regions and, through duality, test
hypothesis both for:
- variance components γ1, . . . , γm and σ2

1 , . . . , σ
2
w;

- estimable functions ψ = c>β and estimable vectors ψ = Cβ.

In deriving confidence regions for the σ2
1 , . . . , σ

2
w and ψ we had to apply

the Glivenko-Cantelli theorem and related results to samples of values of
pivot variables. Moreover, for ψ, we had to consider families of samples in
order to adjust confidence ellipsoids using a technique similar to least square
adjustment of linear regression.
We include a numerical application to the results of an grapevine experiment.
This application is interesting in showing the good behavior of pairs of sam-
ples for the positive and negative parts of the σ2

i , i = 1, . . . , w. Then we show
that we have σ2

i = σ2+

i − σ2−

i , with σ2+

i and σ2−

i linear combinations of the
γ1, . . . , γm.
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Katarzyna Filipiak1, Augustyn Markiewicz2, and
Adam Mieldzioc2

1 Poznań University of Technology, Poland
2 Poznań University of Life Sciences, Poland

For a given space of Toeplitz matrices, the aim of this paper is to find the
projection of a given positive definite matrix on the cone of non-negative
definite Toeplitz matrices. [1] claims that such projection is equivalent to
the projection on linear space of Toeplitz matrices. We show that not all
projections preserve non-negative definiteness. Solution of that problem is
projection on a cone of non-negative definite Toeplitz matrices; cf. [2]
In this talk we give methodology and the algorithm of the projection. We
base on the properties of a cone of non-negative definite Toeplitz matrices.
This problem can be applied in statistics, for example in the estimation of
unknown covariance structures under the multi-level multivariate models; cf.
Cui et al. (2016).
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Jordan triple product homomorphisms on
triangular matrices to and from dimension one

Damjana Kokol Bukovšek and Blaž Mojškerc

University of Ljubljana, Slovenia

A map Φ :Mn(F) →Mm(F) is a Jordan triple product (J.T.P.) homomor-
phism whenever Φ(ABA) = Φ(A)Φ(B)Φ(A) for all A,B ∈Mn(F).
In work in progress, we study J.T.P. homomorphisms on upper triangular
matrices Tn(F). We characterize J.T.P. homomorphisms Φ : Tn(C)→ C and
J.T.P. homomorphisms Φ : F → Tn(F) for F ∈ {R,C}. In the later case we
consider continuous maps and the implications of omitting the assumption
of continuity.
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Kronecker product approximation via entropy
loss function

Katarzyna Filipiak1, Daniel Klein2, Augustyn
Markiewicz3, and Monika Mokrzycka4

1 Poznań University of Technology, Poland
2 P. J. Šafárik University, Košice, Slovakia
3 Poznań University of Life Sciences, Poland
4 Technical Communication College, Poznań, Poland

The aim of this talk is to determine the best approximation of a positive def-
inite symmetric matrix Ω of order n by Ψ⊗Σ, where square matrices Ψ and
Σ are arbitrary (unstructured) or one of them, say Ψ, can be structured as
compound symmetry (CS) correlation, i.e., (1−%)I+%11>, or autoregression
of order one (AR(1))) correlation, i.e.,

∑
i=0 %

i
(
Ci + Ci>

)
with C = (cij),

and cij = 1 if j− i = 1 and 0 otherwise. The best approximation means here
that the entropy loss function (cf. [1])

f(Ω,Ψ⊗Σ) = tr
(
Ω−1(Ψ⊗Σ)

)
− ln

∣∣Ω−1(Ψ⊗Σ)
∣∣− n

is minimized with respect to Ψ⊗Σ, where Ψ is unstructured or structured
as CS or AR(1).
We show that for a given Ω and positive definite component of Ψ ⊗Σ, say
Σ, the best approximation is obtained for positive definite Ψ.
Presented results can be widely used in multivariate statistics, for example
for regularizing the covariance structure of a given covariance matrix, for
determining the estimators of covariance structure or for testing hypotheses
about the covariance structures.
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Kronecker product, Approximation, Entropy loss function.
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Normal approximations for vec, trace and
determinant of noncentral Wishart matrices

Célia Nunes1, Sandra S. Ferreira1, Dário Ferreira1,
Miguel Fonseca2, Manuela M. Oliveira3,

and João T. Mexia2

1 University of Beira Interior, Covilhã, Portugal
2 Nova University of Lisbon, Portugal
3 University of Évora, Portugal

Wishart matrices play an important role in normal multivariate statistical
analysis. In this work we present an alternative approach which has been
already used for normal vectors and is now applied to Wishart matrices,
considering their vec, trace and determinant. The normal approximations we
present hold when the norm of the non centrality parameters diverges to +∞.
Thus we have an attraction to the normal model, for increasing predominance
of non centrality and not for increasing sample dimensions. Starting with the
well behaved central matrices, and after going through the heavy noncen-
tral Wishart matrices we obtain very convenient limit distributions when, as
stated above, non centrality increases. Moreover, simulations showed that the
threshold for the limit normal distributions is quite acceptable.

Keywords
Asymptotic linearity, Limit normality, Noncentral Wishart distributions, vec,
Trace, Determinant.
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Neglecting non-diagonalizable matrices in social
sciences

Pieter-Jan Pauwelyn and Marie-Anne Guerry

Vrije University Brussels, Belgium

In social sciences, many transition processes are described by Markov mod-
els[1]. Markov chains are characterized by stochastic matrices. In this pa-
per, the interest lies with the non-diagonalizable stochastic matrices. We
will explicitly show that it is possible for every non-diagonalizable stochas-
tic 3× 3 matrix to be perturbed into a diagonalizable stochastic matrix with
real eigenvalues arbitrarily close to the original eigenvalues. This is done by
using an additive perturbation[3]. This is based on the denseness of diago-
nalizable matrices in the set of stochastic matrices[2]. Moreover, every non-
diagonalizable stochastic 3×3 matrix can be perturbed into a diagonalizable
stochastic 3 × 3 matrix such that the principal (left and right) eigenspaces
of the original matrix and the perturbed matrix coincide. An algorithm is
presented to determine the perturbation matrix. Finally, a theorem is proved
which shows that there are even more parallels between the original matrix
and the perturbed matrix.

Keywords
Markov models, Stochastic matrices, Non-diagonalizable matrices, Perturba-
tion theory.
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More about linear sufficiency in the linear
mixed model

Augustyn Markiewicz1 and Simo Puntanen2
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A linear statistic Fy is called linearly sufficient, or shortly BLUE-sufficient,
for the estimable parametric function of Kβ under the linear model M =
{y,Xβ,V} if there exists a matrix A such that AFy is the best linear un-
biased estimator, BLUE, for Kβ. Similarly, Fy is called linearly prediction
sufficient, or shortly BLUP-sufficient, for the new “future” observation y∗, say,
if there exists a matrix A such that AFy is the best linear unbiased predictor,
BLUP, for y∗. The new observation y∗ is satisfying y∗ = X∗β + e∗, where
X∗β is estimable, and the covariance matrix between e∗ and y is known. Our
purpose is to predict y∗ on the basis of y.
The concept of linear sufficiency was essentially introduced in early 1980s
by [1,2]. In this paper/talk we generalize their results in the spirit of recent
papers [3] and [4]. In particular, we pay attention to the linear sufficiency of
Fy with respect to y∗, X∗β and e∗ and the mutual relations between these
sufficiencies.
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Robustness in the multivariate Gaussian
distribution

Charles A. Rohde
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In this paper the methods developed by Magnus [1] are used to derive robust
estimators of the variance of the estimated covariance matrix in a multivariate
Gaussian distribution. In addition the profile likelihood for the correlation
coefficient and partial correlation coefficients are derived. Using the methods
developed by Royall and Tsou [2] robust versions of these likelihoods are
developed.

Keywords
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Generalized Jacobi and Gauss-Seidel method
for solving non-square linear systems

Manideepa Saha

National Institute of Technology, Meghalaya, India

In [5], authors considered non-square linear system with number of variables
is more than that of equations and described a new iterative procedure along
with a convergence analysis. Jacobi and Gauss-Seidel methods are most sta-
tionary iterative methods for finding an approximate solution to square linear
systems. Using similar technique as in [5], Jacobi and Gauss-Seidel procedures
for solving non-square linear system with number of variables is more than
that of equations, are generalized. More specifically, Jacobi or Gauss-Seidel
iterative methods are applied for the square part of the system and the itera-
tive method described in [5] is applied for the non-square part of the system
to obtain an approximate solution of the system. We also derive sufficient
conditions for the convergence of such procedure. Finally, a procedure to ob-
tain an exact solution of the system is provided. Numerical illustration has
been given for the same, and to compare the procedure with the procedure
available in [5].
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Iterative method, Jacobi, Gauss-Seidel, Convergence.
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A new method for determining the radius of
regularity of parametric interval matrices

Lubomir Kolev1 and Iwona Skalna2 and Milan Hladík3
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3 Charles University, Prague, Czech Republic

The problem of determining the radius of regularity r∗ of a parametric inter-
val matrix is known to be NP-hard. In this paper a method for determining r∗
is suggested, whose time complexity is not a priori exponential. The method
is based on an equivalent transformation of the original problem to the prob-
lem of determining the real maximum magnitude (RMM) eigenvalue λ∗ of an
associated parametric generalised eigenvalue problem. The proposed method
determines the regularity radius in polynomial if certain sign conditions are
fulfilled. Otherwise, it produces upper bound z on r∗. Numerical examples
of parametric interval matrices of large size illustrate the potential of the
method.
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Parametric interval matrix, Regularity, Regularity radius.
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Infinite matrices and the Jordan form

Roksana Słowik
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The talk concerns the concept of a Jordan canonical form of a matrix. As it is
well-known if F is an algebraically closed field, then every square matrix over
F is similar to its Jordan form. The aim of the presentation is to introduce
an analogue of the Jordan form of a N×N matrix and sketch the proof of the
theorem stating that for every upper triangular N×N matrix a there exists a
column finite (i.e. possessing in each column only a finite number of nonzero
entries) matrix x such that x−1ax is a generalized infinite Jordan matrix.
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Jordan canonical form, Infinite matrix, Infinite dimensional vector space.
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On circulant matrices with Ducci sequences and
Fibonacci numbers
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A Ducci sequence generetad by A = (a1, a1, · · · , a1) ∈ Rn is the sequence{
A,DA,D2A, · · ·

}
where Ducci map D : Rn → Rn is defined by

DA = D (a1, a1, · · · , a1) = (|a2 − a1| , |a3 − a2| , · · · , |an − a1|) .

In this study, we examine some properties of matrices C,DC,D2C, where
C = (c0, c1, · · · , cn−1) is a circulant matrix ,whose entries consist of Fibonacci
numbers, and D denotes Ducci map.
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Circulant matrix, Ducci sequence, Fibonacci numbers.
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Immanant inequalities on correlation matrices
and Littlewood-Richardson’s correspondence

Ryo Tabata
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The Littlewood-Richardson rule is one of the most important properties to
describe the representation theory of the symmetric group, i.e. the coefficient
of the product of Schur functions can be calculated in a combinatorial way
using Young diagrams. In [3], it is also pointed out that immanants, which
are special cases of generalized matrix functions labeled by Young diagrams,
have the same rule.
One of the most famous open problems involving immanants is Lieb’s perma-
nental dominance conjecture ([2]), a sort of analogue of Schur’s inequalities
([4]). In this talk, we analyze the correlation matrix Yn = (n/(n−1)δij−1/(n−
1)), which conjecturally gives sharper bounds of the inequalities, where δij
is the Kronecker delta function. Motivated by Frenzen-Fischer’s result ([1]),
i.e. limn→∞ per Yn = e/2, we explore the limiting behavior of immanants
through the limit shape of Young diagrams. The Littlewood-Richardson rule
will be applied as the key lemma. We will introduce other related topics.
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Sums of H-unitary matrices
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Let H ∈ Mn be an nonsingular and Hermitian. A matrix A is said to be
H-unitary if A∗HA = H. The set of H-unitary matrices forms a multiplica-
tive group. However, the sum of H-unitary matrices need not be H-unitary.
We discuss some previous results and show analogous or new properties for
sums of H-unitary matrices. For example, we show that every matrix can be
expressed as a sum of H-unitary matrices. We also characterize all matrices
expressible as a sum of two H-unitary matrices.
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Root location of polynomials with totally
nonnegative Hurwitz matrix
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For a given real polynomial

p(z) = a0z
n + a1z

n−1 + · · ·+ an, a0 > 0,

the n × n matrix Hn(p) = (a2j−i) is called finite Hurwitz matrix, and the
matrix H∞(p) = (a2j−i)i,j∈Z is the infinite Hurwitz matrix.
It is known [3,2] that the total positivity of the matrix H∞(p) is equivalent to
stability of the polynomial p(z) (roots in the open left half-plane), while the
totally nonnegativity of [1,4] the finite Hurwitz matrix Hn(p) does not imply
stability of p(z). In this talk, we completely describe root location of the
polynomial p(z) whose finite Hurwitz matrix Hn(p) is totally nonnegative.
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Fixed effects estimation in two-variance
components models

Tatjana von Rosen1, Dietrich von Rosen2, and
Julia Volaufova3
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2 Swedish University of Agricultural Sciences, Uppsala, and Linköping University,
Sweden

3 LSU Health - New Orleans, USA

In linear mixed models, it is well known that inference about the fixed effects
parameters is not straightforward even under normality assumptions. Unless
the model is balanced, in other words, unless the model matrices meet the
necessary and sufficient conditions for the best linear unbiased estimator
(BLUE) and ordinary least squares estimator (OLSE) to coincide, there is no
closed form of the empirical version of the BLUE obtained by, say maximum
likelihood method. For example, in case of a two-way analysis of variance
model with random effects the situation is challenging since it is not obvious
how to set up the test statistic so that inference can rely on the F-distribution.
We have adapted the ideas suggested in, e.g., [3],[4], [1], and [5] and de-
veloped an explicit estimator of fixed effects in a mixed linear model with
two variance components (see [7]) under rather general conditions. The new
proposed estimator is based on a partition of the sampling space and on a
re-sampled subvector from a linearly transformed residual vector. The newly
proposed estimator can be considered as an alternative to the classic moment
estimators. Generalizations of the suggested estimator are also investigated.
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Applications of the Vandermonde matrix in
statistics

Dietrich von Rosen
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The Vandermonde matrix has a long history. In statistics the matrix appears,
for example, in the design of experiments and in multivariate statistical anal-
ysis. In particular, in multivariate statistical analysis the determinant of the
Vandermonde matrix plays a key role through its determinant which is easily
expressable. A few well known relations and some less well known recursive
relations will be presented.

Keywords
Vandermonde matrix, Wishart matrix, Recursive relations.
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Tools for numerical inversion of the
characteristic functions and their applications

Viktor Witkovský
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The exact statistical inference frequently leads to a non-standard probability
distributions of the considered test statistics, see e.g. [1–4]. Here we consider
simple methods and algorithms for combining characteristic functions of se-
lected probability distributions and their numerical inversion to evaluate the
associated CDF and/or PDF. The suggested methods have been implemented
as The Characteristic Functions Toolbox in MATLAB and R programming
environment for statistical computing, [5]. The applicability of the methods
and algorithms will be illustrated by computing the exact (small sample) dis-
tribution of some well-known test statistics (e.g. the exact null-distribution
of the Bartlett test statistic for testing homogeneity of variances), and/or the
distribution of selected test statistics in multivariate statistical analysis (as
e.g. the distribution of the Wilks Lambda statistic).
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Both residual errors accurate algorithm for
inverting general tridiagonal matrices

Paweł Keller and Iwona Wróbel

Warsaw University of Technology, Poland

Even though in most problems involving matrix inverse the numerical com-
putation of the actual inverse is usually not necessary (the problem may be
reformulated to solve a corresponding system of linear equations or a corre-
sponding matrix equation), there seems to exist no computational system or
numerical library which would miss a subroutine for numerical computation
of the matrix inverse.
When using such a subroutine one could expect to obtain the most accurate
result possible. Unfortunately, all numerical algorithms (that are known to
the authors) for computing the matrix inverse suffer a curse that the larger
of the residual errors, ‖AX − I‖ and ‖XA − I‖ (X denotes the computed
inverse of a matrix A), may grow as fast as cond2(A), where cond(A) is the
condition number of A (we assume that A is not a triangular matrix).
In our presentation, we present the algorithm for inverting general tridiagonal
matrices that overcomes the above curse, i.e. it computes the inverse for which
both residual errors grow linearly with cond(A). In addition, the proposed
algorithm has the smallest possible asymptotic complexity for the considered
problem.
The proposed method is based on careful selection of formulas for the el-
ements of A−1, which preserves all recursive properties resulting from the
equations AX = I = XA. Extensive numerical tests confirm very good nu-
merical properties of the algorithm.

Keywords
Matrix inversion, Tridiagonal matrix, Recursive algorithm, Numerical stabil-
ity.
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Problems of inference in a special multivariate
linear model

Ivan Žežula1, Daniel Klein1, and Anuradha Roy2

1 P. J. Šafárik University, Košice, Slovakia
2 The University of Texas at San Antonio, San Antonio, Texas, USA

Simplified variance structures in multivariate linear models can substantially
reduce number of 2nd order parameters, and thus required number of observa-
tions for a valid inference. At the same time, such structures are in many cases
reasonable, because they are implied by the design of experiments. However,
to take them into account is not an easy task. We will show some statistics for
basic location testing in models with such a simplified parameter structure,
especially multivariate repeated measures data model. The performance of
several test will be compared. Methods will be demonstrated on real medical
datasets.

Keywords
Multivariate linear model, Location test, Special variance structure.
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A Sub-Stiefel Procrustes problem

João R. Cardoso1 and Krystyna Ziętak2

1 University of Coimbra, Portugal
2 Wrocław School of Information Technology, Poland

In the talk we consider a Procrustes problem on the set of sub-Stiefel matrices
of order n. For n = 2, this problem has arisen in computer vision to solve
the surface unfolding problem considered in [2]-[4]. A sub-Stiefel matrix is
a matrix that results from deleting simultaneously the last row and the last
column of an orthogonal matrix.
An iterative algorithm for computing the solution of the sub-Stiefel Pro-
crustes problem is proposed. For these purposes we investigate the properties
of sub-Stiefel matrices. We also relate the sub-Stiefel Procrustes problem with
the Stiefel Procrustes problem and compare it with the orthogonal Procrustes
problem.
The talk is based on the paper [1].

Keywords
Procrustes problem, Sub-Stiefel matrix, Approximation of a matrix.
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Application of Jordan algebra and its inference
in linear models

Roman Zmyślony

University of Zielona Góra, Poland

Properties of Jordan algebra (Jordan 1934) or quadratic subspace (Seely,
1977; Zmyślony, 1980) will be discussed from the point of view of statistical
applications to inference in univariate and multivariate normal models. Both
estimation and testing hypotheses will be presented. Special cases for random
effects model and blocked compound symmetric (BCS) covariance structure
for doubly multivariate observations (m dimensional observation vector re-
peatedly measured over u locations or time points), which is a multivariate
generalization of compound symmetry covariance structure for multivariate
observations, was introduced by Rao (1945, 1953) while classifying geneti-
cally different groups, and then Arnold (1979) studied this BCS covariance
structure while developing general linear model with exchangeable and jointly
normally distributed error vectors. The test about covariance structure will
be presented.

Keywords
Testing hypotheses, Estimation of parameters, Jordan algebra, Linear mod-
els.
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On parallel sum of matrices

Péter Berkics

University of Pécs, Hungary

The parallel sum of Hermitian semidefinite matrices shows up in many ap-
plied problems, like electric circuits, statistics, numerical methods, etc. I will
introduce the main properties of this matrix operation, and its relations with
matrix mean inequalities. The main problem I am interested in is to find ex-
plicit solutions of the matrix equation A : X = B where : denotes the parallel
sum operation. There are known sufficient conditions for the existence of a
minimal solution, but in general there are many possible solutions which are
not yet studied.

Keywords
Parallel sum, Hermitian semidefinite matrices.
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Models for stochastic symmetric matrices

Cristina Dias1,4, Carla Santos2,4, Célia Nunes3,
and João T. Mexia4

1 Polytechnical Institute of Portalegre, Portugal
2 Polytechnical Institute of Beja, Portugal
3 University of Beira Interior, Covilhã, Portugal
4 Nova University of Lisbon, Portugal

In this work we study the matrices of a structured family of stochastic sym-
metric matrices. This matrices are all of the same order k and correspond
to the treatments of a base design. The most interesting case is when the
matrices in the family have a dominant first eigenvalue. We then study the
action of the factors in, on the components of the first structure vector. We
will consider briefly the models for these matrices and then we show how to
carry out inference for the structured family.

Keywords
Structured families, Symmetric matrices, Transversal analysis.
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Tribute to Yaroslav Zemánek

Natalia Bebiano

University of Coimbra, Portugal

I first met Yaroslav Zemánek when he decided to visit the Maths Department
of the University of Coimbra circa 1996, following a visit to the South of Spain.
He took a bus in Sevilha and travelled by Algarve and Alentejo. At the time
the Center of Mathematical Research in the Department invited him to give
a talk, and it was impressive the way he communicated his results and open
problems.
He was delighted when I took him to visit Biblioteca Joanina and Sala dos
Capelos, which are part of the university old buildings and Unesco World
Heritage. Nevertheless, Doctor Zemánek became much more excited when
speaking about the Marcus-Oliveira conjecture on the determinant of the
sum of two normal matrices with prescribed eigenvalues, a problem that still
remains open.
I met him again in other ocasions, namely at some WONRA meetings. I
was always fascinated for the clarity and insights of his lectures, his broad
knowledge and the clever ideas he always came up with. I consider him a
source of inspiration, being always ready to discuss mathematical questions
and share with everybody his vast horizons.
Stay in peace.
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My meetings with Jaroslav Zemánek – the way
I remember them

Andrzej Sołtysiak

Adam Mickiewicz University, Poznań, Poland

My first meeting with Jaroslav Zemánek took place in May 1975 during the
“VI-th Seminar on Functional Analysis” in Štefanova (near Žilina). This was
one of the conferences organized every year somewhere in Czechoslovakia by
Professor Vlastimil Pták. From then on we have seen each other very often
at the Institute of Mathematics of the Polish Academy of Sciences in Warsaw
or at many conferences in Czechoslovakia, Poland, Germany, Canada, and
Slovakia.
During my talk I am going to tell about mathematical problems Jaroslav was
interested in at the beginning of His mathematical career, why He moved from
Prague to Warsaw, and what was the content of His PhD thesis. I also say
about His way of “doing” mathematics, what kind mathematics He liked and
also what He disliked in it.
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Mathematics – the borderless passion of
Jaroslav Zemánek

Iwona Wróbel

Warsaw University of Technology, Poland

This talk is dedicated to professor Jaroslav Zemánek (03.09.1946 – 18.02.2017).
A great mathematician, he first worked in Mathematical Institute of the
Czechoslovak Academy of Sciences and then in Mathematical Institute of the
Polish Academy of Sciences. He was an author of over 70 scientific papers,
winner of several scientific awards (for instance Banach Prize of the Polish
Mathematical Society, in 1987), member of editorial board of several journals,
a mentor of 7 PhD students. I had an honour to be one of them.

Jaroslav Zemánek (03.09.1946 – 18.02.2017)

I first met Jaroslav Zemánek in 2001, when I was looking for someone patient
enough to be a supervisor of my PhD thesis. After I finished it, we continued
to have mathematical discussions and in time we became friends.
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Jaroslav Zemánek and his beloved wife Barbara. Behind them the second love of
his life – books. The photo was taken in Jaroslav and Barbara’s apartment in

Warsaw.



I. Wróbel 117

Mathematical interests of Jaroslav Zemánek were very broad, including mainly
linear operators, Banach algebras, complex analysis, algebra, history of math-
ematics. And matrix theory, for instance topics related to localization of spec-
trum. I do not have enough knowledge to tell about everything. In this talk
I will describe a couple of questions we were working on together, mostly
related to matrices. Some of them remained open.
I will also briefly sketch biography of Jaroslav Zemánek, his interests, math-
ematical and other, mention some of the events he organized, his Operator
Theory Seminars, the (somewhat unique) conference in Jurata, in 2010, and
also tell about Jaroslav as I knew him.

Jaroslav Zemánek in his free time, during one of his many travels.
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Matrices which Jaroslav Zemánek loved

Krystyna Ziętak

Wrocław School of Information Technology, Poland
Wrocław University of Science and Technology, Poland

I met Jaroslav Zemánek for the first time at the end of the 1980s or at begin-
ning of the 1990s on a seminar in Warsaw. After the seminar all participants
have decided to drink coffee and talk about recent conferences. Just when I
had to leave for the railway station to return to Wrocław, Jaroslav Zemánek
stood up and said "Why are you going? I would like to discuss matrices". In
September 1991 or 1993 we went to Zakopane for a conference. From that
time we had many opportunities to discuss matrices. In the talk I would like
to say how Jaroslav Zemánek has inspired some my investigations, why we
have no common paper, and what kind of man he was.

Keywords
Zero trace matrix, Moore-Penrose generalized inverse, Approximation of ma-
trix.
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