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Abstract

The notion of ‘rank of a matrix’ as defined by ‘the dimension of
subspace generated by columns of that matrix’ over any field has limi-
tation to be considered for a matrix over any other algebraic structure.
The ‘determinantal rank’ defined by the size of largest submatrix hav-
ing nonzero determinant, which is in fact equivalent to the column rank
for any matrix over a field, was considered to be an alternative for the
class of matrices over a commutative ring. Even this detrminantal rank
or the McCoy rank are not so efficient in describing several properties
of matrices like in the case of solvability of linear system. In the present
talk, we discuss the introduction of ‘rank function’ associated with the
matrix as defined in [3] and its characteristics. Also, we present rank
condition for the existence of Drazin inverse for a square matrix over
a commutative ring.
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